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Dynamical  Diffraction Theory of Waves in Distorted Crystals. 
II. Perturbation Theory 
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As a special application of the 'lamellar-crystal theory' described in Part  I, a two-wave theory is 
developed for distorted crystals in which the individual lamellae are perfect in lateral directions. 
A perturbation approach is used in practical applications so that  slightly distorted crystals are 
mainly concerned. An apparent departure from Friedel's law on (h, k, 1)-and (h, k,/)-reflections 
in X-ray topographs (Lang, private communication) is interpreted as an effect of a slight lattice- 
bending in the presence of the Borrmann absorption. The distortion of Pendell6sung fringes due 
to a lattice bending in electron eases as well as in X-ray cases is also explained. The applicability of 
the present two-wave theory to crystals having an arbitrary distortion is discussed together with 
the justification for the column approximation (Hirsch et at., 1960). 

1. Introduction 

Most of diffraction theories applied to distorted 
crystals are formulated on the base of the wave- 
k inemat ica l  approximat ion  since they  are ma in ly  
concerned wi th  h ighly  distorted regions in small  
crystall i tes (Warren & Averbach,  1950; Wilson, 1952). 
Recent  direct observations of latt ice defects in a single 
crystal  by  means of electrons (Hirsch et al., 1956) 
as well as by  X-rays (Lang, 1958; Bor rmann  et al., 
1958; Newkirk,  1958) have s t imula ted  the develop- 
ment  of the wave-dynamical  theory applicable to 
distorted crystals. 

So far a few a t tempts  along this line have been 
reported in electron problems.* Heidenreich (1949) 
has dealt  wi th  a homogeneously bending crystal  and 
Hashimoto et al. (1960) have been concerned wi th  
an edge dislocation lying in a crystal  paral lel  to the 
incident  wave. The pr incipal  idea used by them is to 
divide a distorted crystal  into m a n y  parts  or columnst  
along the direction of the incident  wave and to apply  
a perfect-crystal  theory to an  individual  column. 
The essential assumption is tha t  the lat t ice is 
perfect wi th in  these columns in any  sense. Thus their  
theories m a y  be called 'perfect-crystal  column theo- 
ries'. 

In the present paper, it will be shown that the 
two-wave theory of Par t  I (Kato, 1963) can be developed 
for the case of distorted crystals in which distort ion 
occurs along a direction of wave propagation. Fun-  

* The author was informed during the preparation of this 
work tha t  Howie & Whelan were developing independently 
a theory which was equivalent to the present theory in fun- 
damental  points. Their paper has been published already 
(1961). (Note added in the revision.) 

The word 'columns' was used first by  Hirsch et al. (1960) 
in their kinematical theory on dislocation images in electron- 
micrographs. 

damenta l  aspects of the theory will  be described in § 2. 
In  order to obtain practical  results we usc a pertur- 
bat ion approximation.  In  § 3 and  § 4 the following 
two experiments  are explained respectively in terms 
of the present theory;  (a) an apparent  depar ture  from 
the Friedel  law on (h, k, l) and (h, k, i) reflections in 
X-ray  topographs (Lang, pr ivate  communicat ion)  and 
(b) the bending of Pendell6sung fringes due to latt ice 
distort ion in electron cases as well as in X-ray  cases. 

Since the present theory is a ' two-wave theory ' ,  
we must  necessarily assume tha t  the crystal  slices 
are perfect in lateral  directions but  displaced relative 
to one another  If, however, we combine the  present 
theory wi th  the column approximat ion  we m a y  
apply  the theory to more general cases of latt ice 
distortions. So far the column approximat ion  is not  
used with any  sufficient just if icat ion par t icular ly  in 
a wave-dynamical  sense, al though the approximat ion  
itself is very  fundamenta l  for the theory of Heiden- 
reich and Hashimoto et al., as well as for the present 
one. In  § 5, using the d iaphragm consideration (Kato, 
1952), two semi-quant i ta t ive  criterions are given for 
jus t i fy ing the column approximation.  

2. T w o - w a v e  theory for distorted c r y s t a l s  

Any  deformation of lat t ice can be described in te rms 
of the displacement  of lat t ice points as a funct ion of 
positions in the undeformed state. If the local varia- 
tion of the displacement  is small  enough, la t t ice 
conception is retained. Then we can define also 
reciprocal lat t ice vectors as a funct ion of positions 
in real space. In  this  paper  we are concerned with 
only such small  distortions. 

(a) Two-wave theory 
In  this  section we consider cases in which the 



N. K A T O  283 

lattice is perfect and homogeneous in lateral directions. 
Here lateral implies parallel to the incident surface 
of the crystal. Thus any dilatation, til t ing or rotation 
is not allowed for the upper par t  of the crystal with 
respect to the lower part .  Otherwise some misfits 
between upper and lower parts  of the crystal may 
occur and violate the homogeneity of the lattice in 
lateral directions. Under this l imitation the whole 
crystal can be divided into crystal slices by perfect 
lattice planes which are equivalent and parallel to 
the incident surface. Thus the diffraction phenomena 
in an individual crystal slice can be treated in the 
same way as shown in Par t  I for perfect crystals. 
Next  we consider a net plane which is inclined with 
respect to the incident surface. In perfect crystals the 
net plane should be perfectly plane. Now this restric- 
tive condition is taken off. In  the distorted crystals 
with which we are concerned here the inclined lattice 
planes are allowed to be bent with going into the 
crystal. The lattice distortion of this type is specified 
only by giving the displacements of the crystal slices 
(or of equivalent axes). 

We take Xn- and yn-axes and their corresponding 
reciprocal axes on the top surface of each slice with 
the origins placed at  the equivalent lattice points. 
With  respect to these coordinate axes we can define 
the following notations as in Par t  I. 

{pn, q~}: The relative displacements of nth crystal- 
slice with respect to ( n - 1 ) t h  slice in lateral direc- 
tions. 

zJzn: The thickness of the crystal slice. 
(~, U, ~): The components of the wave vector of the 

incident wave in the reciprocal space. 
(2', ~/', ( ' ) :  The components of the wave vector of the 

diffracted wave in the reciprocal space. 
(gl, g2, g~): The components of the reciprocal lattice 

vector g~ of the net plane* with which we are 
concerned. 

Since the lattice is assumed as perfect in lateral 
directions g~ and g~. are constant throughout the crystal 
whereas g~ may not be so. Among these quantities 
the relation 

glp~ + g2q~ + g~A z~ = 0 (1) 

should be held, since the vector ~n is perpendicular 
to the net plane concerned. 

The components (2, ~) and (2', ~7') are connected 
with each other by 

(~', ~ ' )= (2 ,  V)+2~(gl ,  g~) • (2) 

In  addition ( and ( '  are directly given by (~, U) and 
(~', ~/') respectively because the magnitude of the 
wave vectors is always K. Consequently the com- 
ponents (2, U, () and (~', U', ( ') are constant through- 

* Strictly speaking, this should be called 'net surface' 
since it can be defined as a plane only in a localized region. 
Since no ambiguity is expected 'net plane' will be used here- 
after. 

out the crystal. Thus only two waves are sufficient to 
account for the crystal waves. 

Finally a parameter  is defined by 

09n= ½ ( ~ -  ~ ' -  2zg~) (3) 

for each slice. This indicates the departure of the 
incident wave from the exact Bragg condition. 

Using these relations we can obtain the relation 
between the Fourier transforms of the wave function, 
Fn and Fn+l for the nth  and (n+  1)th slices (cf. equa- 
tion (I.33)), 

Fn+l = (dn~nQn)Fn. (4) 

Here ~ ,  Qn and dn are given by equations (I.30), 
(I.31) and (I.32) respectively. Like the cases of 
perfect crystals we can make the matr ix  product 
symmetrical as 

dn~nQn = exp i~b~. R~ (5) 

where q)n and Rn are given by 

¢ ~ =  (2pn+ uqn+ ~Azn)+~(q~t+qd)Az,-  09nAz,~ (6) 

0 a 

They are the generalized equations of equations 
(I.38) and (I.39) respectively. Notations 09t, 09r, a, b12 
and b2~ have the same meanings as those in Par t  I. 
Thus the problem is reduced to calculation of the 
matr ix product 

KN---- RNRN-1 • • . R1  . (8)  

Similarly to equation (I-41) we diagonalize a matr ix 

= X~X~X~ ~ (9') 

where X~ and X~ -~ are the right and the left eigen- 
matr ix  of Rn, respectively, and exp )~i n are the eigen- 
values. The lat ter  are given by equation (I-42) for 
each slice. 

Thus 2~ = i(09~+B2)½Az, 

2~ = -i(09 2 + B2)½Azn (10) 

where 09~ stands for the parameter  099 of the nth slice. 
With this notation 

where 

and 

K ~  = X z c H ~ . X ~  1 ( 1 1 ) 

HN = ~tNEN-I~N-1 • • • EI~I (12) 

En = X~-~I_IXn • (13) 

In the present problem difficulties arise in tha t  E~ 
is no longer a unit  matrix.  I t  may be expected, however, 
tha t  En is close to a unit  matrix if distortions are 
sufficiently small. In  fact, writing 
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12 ~ 12 (14) 
e ~ l+e~o.. -- \ s,~ exps~2 

we have, for example, 

+ { [ ~ - ( ~ ,  + B2)½]/(~i + B2)} (A ~n/2) 
where 

A ~ = ~ + ~ -  ? . .  

In  the expression for e~'~ the imaginary part  decreases 
with decreasing thickness Zlz~ and the factor 
z l ~  is of an order of magnitude Az.~_10 -s cm. 
On the other hand the real part  is independent of 
/lzn and the factor A~n is of an order B -~, 
namely larger than  10 -4 cm. in X-ray cases and 10 -6 
cm. in electron cases. So we can safely neglect the 
imaginary part.  Thus we have finally 

s~2~ q)~ + (q)~ + B~)½ (_~2)  
~ + B 2  

8n ~, --  qgn't- (q)~n + B2)½ ( ~ )  
~2 - ~ + B  ~. 

~ + B ~  ( 1 5 )  

,s r s~ r~ t 

1 1 

Fig.  1. Schemat ic  d i ag ram of m a t r i x  calculat ion.  Br idg ing  t-t 
should  be inser ted  for ca lcula t ing odd-order  m a t r i x  Hii(~n+~). 

The magnitude of these quantities is of an order 
(A q~,,/B) at most. The quant i ty  zJ ~n is the change of 
~n due to the bending of the net plane concerned 
between the neighbouring slices. In perfect crystals 
the Bragg condition is satisfied at  ?D=O and by 
increasing ~D by the amount of B the diffracted 
intensity decreases to the half of the maximum value 
at the Bragg condition. Thus, neglecting a numerical 
factor, A qg,,/B is a ratio of a bending angle of the 
net plane per one slice and the angular width of the 
Bragg reflection. 

If {s~}'s are small enough compared with 1, we 
can expand the matrix H~ in the power series: 

(.jo, 2 (0 "a") 0) Hz¢= o~) + ~2~'a) + H~) + . . . .  (16) 

The matrix elements in this expression are cal- 
culated in terms of {/t}} and {st} considering a topolog- 
ical diagram shown in Fig. 1. Segments on the line 
1-1 and 2-2 correspond to a multiplication through 
diagonal elements of En in equation (12). Bridging 
elements such as si-s~ and rt-r~ correspond to mul- 
tiplication through skew elements of E~ by  which 
a switching is operated from multiplication of 
exp {S~'l/t~'l} to multiplication of e x p  {8~2~n2} or vice 
versa. The suffixes st and rt specify the switching 
matrices. Matrix elements of H N  a r e  the sum of 
products corresponding to all possible routes from the 
right j- terminal  to the lef t / - terminal .  The expansion 
of equation (16) implies a classification of these 
routes in terms of the number of bridgings. Following 
this consideration we have 

_h r 

H(~ °) = exp 2" (e~ +/t~l) 
i = l  

~v (17) 

H(2 °) = exp ~ (s~2., + 2~) 
i = l  

Hi~) H(~ °)._F s~'2 exp .~ (s~2 + A i " = . ~ -  s h  - t h )  

~=1 ~=1 (18) 
~_/(o) i i • H(~I ) ~22 -~ e~1 exp e~2 ~2) = (sn + 2 n -  - • 

n = l  i = l  

Changing the summation to an integral it  follows 
from equation (10) tha t  

XlI=i (cf2q - Be)½dz 
i=1 0 (19) 

~ 2 ~ if:.(q)2TB2)½dz 22 ~--- - -  
i=1 

where ~ is used in the place of ~ and assumed as 
a continuous function of z. 

Moreover from equation (15) 

71-log N 

i = l  

i=1 ~nn + log 

i = 1  

where 

~ / n  

Here we can see 

fin = {~n+(~+B2)½} ½ (21) 
---- {~n-- (~2+B2)½}½. (22) 

tiny,, -= iB .  (23) 

By inserting these into equations (17) and (18), 
the matrix elements of H~ are given as follows" 
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H(I~'0 = ~ I(1~ n) exp i (q)e + Bg)½dz 
0 

~(2,0 aN ~'1 1(2,0 exp --i  (~2+B2)½& (24) ~ 22 = "L22 
0 

l" y_/(2n-t-1) 0ON ~12 = (fllflN)-l I(l~n+l~ exp i ( q~2 + B2)idz 
o 

-~Tj(2n+l)21 = a N  ( y l y N ) _ l i ( 2 ~ n + l )  e x p  - - i  (q~+B~)½dz, 
0 (25) 

where 
If °) = I(2°)= 1 (26) 

and 

f S" T(0 B2.~o~ &p e x p - 2 i  (q)e+B2)½dz 
~1o. = -2- ~1 ~ + B~ 0 

f Sl (c?~+B~)½dz B e ' ~  d~ exp2i (27) 
~(d)= T ~, ~+B~ 

General terms l (2.n) and i(~.n+~) -u _~ are given in the Ap- 
pendix. 

Once we have the matrix elements of HN, we can 
write down KN-matrix from equation (1 1) as follows: 

I A+ exp i +Be)½dz K I ~  - -  2a~a~v 

f" ] - A - . e x p  - i  (q~2+B~)½dz 
o 

[ S" 1 --B+ exp i (~+B~')½dz 
K22 - -  2ai~cN o 

+ B - . e x p  - i  +B~)½dz (28) 

K~ - bw. C+ exp i Be)½dz 
2~XlaN 

b~t D+ exp i 

-D- .exp- iS i (q~e+B~)½dz  ] (29) 

where 

A+=fl~vD+=fllflNIi(~n) + fl~v Ii~n+l) 

A_=2 (2.) (,~)~,~e,+~) y~vD-= y l?NlI2~ + ,-,-21 

B+=?~.C+=ylyNZI~ ' °  + (Y~-I N) ZI(~ n+l) 

B - =  fl~vC- = plpN.~.,,~ + EI(2~ ~+1) . (30) 

~f(~)  and I : I~  ~+1) I t  can be shown that  infinite series ---~i 
converge absolutely (see Appendix). In some partic- 
ular cases (§ 3 and § 4), the first term is sufficient 
for the crystal waves to be accounted for. In this case 

A+ = B -  = fllflN, A -  = B+ = y lyN 
C- = D+ = (ill~fiN), C+ = D - =  (yl/yN). (31) 

These are constant with respect to position z. Then 
we can retain the conception of the dispersion surface. 
Crystal waves can be described by an interference 
between two waves which belong to two branches of 
the dispersion surface, although the wave length 
changes according to crystal distortions. 

In the second approximation, the skew components 
I!~) appear in A, B, C, and D. This does mean that  
scattering waves are created due to crystal distortions. 
If we change the variable z to h through 

( cfi + Be)½ dz = B dh 

we can see I!~) are proportional to a Fourier coefficient 
of lattice distortion dcHdh modified by a factor 
( ~ + B 2 )  -1 which suppresses the effect of regions 
where the Bragg condition is not satisfied. 

(b) Combination of the two-wave theory with the column 
approximation 
The lattice distortion to which the present theory 

is applicable in a strict sense seems to be very re- 
strictive at a first sight. If, however, we combine 
the present theory with the following column approx- 
imation we may deal with fairly general cases of 
lattice distortions. The column approximation in the 
present theory implies the following processes of 
calculating wave functions. We take a column of 
suitable size and shape around the point at which 
we need to know the wave function. We apply the 
two-wave theory to a hypothetical crystal which is 
perfect in lateral directions, being almost the same 
as the real crystal within the column. Finally, the 
wave function due to the real crystal is approximated 
by the wave function due to this hypothetical one 
at the point concerned. These processes may be 
justified if it is possible to find a suitable column 
which satisfies the following conditions: (a) within 
the column an incident wave and the corresponding 
diffracted wave can be specified by a set of discrete 
values of (~, 7) and (~', 7') respectively and (b) the 
surrounding regions outside the column have no effect 
on the wave function at the central region of the 
column. Critical conditions for these will be discussed 
in §5. 

In the cases of electron problems (Heidenreich, 1949; 
Hashimoto, 1960; Hirsch et al., 1960) the direction 
of columns has been taken either along the direction 
of the incident wave or along the diffracted wave. 
Actually, however, the crystal wave propagates in a 
direction lying between these directions (Laue, 1952, 
1953; Ewald, 1958; Kato, 1952, 1958). Therefore it 
is more reasonable to take the direction of the column 
along the direction of wave propagation. In electron 
cases, nevertheless, it is almost unnecessary to em- 
phasize this alteration since the Bragg angle is small 
enough. In X-ray cases, on the other hand, the dif- 

A C 1 6 - - 1 9  
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ference between the direction of wave propagation 
and the directions of the incident and diffracted 
wave is recognizable in ordinary experimental con- 
ditions for large single crystals. Moreover, as will be 
seen in § 4(b), the direction of the wave propagation 
is bent due to lattice distortions. In this case it is 
more adequate to take a bent column in which the 
crystal wave propagates along the adopted column 
in a self-consistent manner. If lattice distortions are 
too large, of course, we cannot define such a column 
which satisfies this self-consistency and the conditions 
(a) and (b) altogether. 

3. Intensity anomaly of (h, k, l) and 
(h, k, l) reflections 

In X-ray traverse topographs for Si single crystals, 
Lang (1958) observed first that  the topograph image 
of distorted regions due to (h, k, l) and (h,, k, i) reflec- 
tions are different in integrated intensity.* The 
distortion with which we are concerned here is, 
for example, the one which is extended over a fairly 
wide area due to an array of the same-signed disloca- 
tions. 

We start our discussion with a non-absorbing case. 
The R-matrix can be transposed to an R'-matrix by 
a diagonal matrix T as 

where 

R' = (exp iq~Az 
0 

Thus we have 

R = TR'T-~ (32) 

and 

exp ficpAz) (iBaAz iBAz~ (34, a* ] 

K = TK'T-1 (35) 

K' = R:vR'v_~.. .R;.  (36) 

In non-absorbing cases the matrices {R~} are unitary 
matrices, so that  K' is also unitary. Thus, generally, 

t t 

IK~21 =IKell .  (37) 

From equation (I.47), 

Ihk~ = ~-IKexle = 1K211 e 

2 t 2 I~ii = ~71K121 = IKml • 

Therefore 
Ih~z = I ~  . (38) 

This statement holds independently of a parameter ~; 
consequently, the incident angle and a type of crystal 

* Traverse pa t te rns  are produced by an integrated intensi ty 
diffracted from individual  points  at  the exit surface (see 
Kato,  1961). 

distortions. We cannot expect any anomaly men- 
tioned above. 

Next we consider absorbing crystals. If the crystal 
distortion is small, neglecting higher terms of the 
series, C and D are given by equation (31). From 
this it follows that  

C+=D_>C_=D+ 

if ~0N > ~01 or vice versa. Moreover, if B 2 is a complex 
quantity due to periodic distribution of absorbing 
centers we have 

lexp i I (~°2+ Be)½dz] > I e x p - i  I (~°2+ B2)½dz[ 

assuming the imaginary part of B e is negative. There- 
fore, neglecting the oscillation term, i.e. the cross 
term of C+ and D+, we have 

t t 

IKlel > IKzal (39) 

or vice versa depending upon the relative magnitude 
of ~1 and ~N and the sign of the imaginary part of B 2. 
This is true for all q01, namely for the whole incident 
angle. Thus we can expect an anomaly due to slight 
distortions under the presence of the Borrmarm 
absorption. 

In highly distorted crystals, we cannot neglect 
higher terms in C+ and D+, which include factors 
such as 

exp +2i I (q92+Be)½dz " 

In this case C- and D-  may be larger than C+ and D+ 
respectively under the condition that  the imaginary 
part of B e is negative. Therefore it is rather difficult 
to get a general conclusion on the magnitude of 

t t IKlel and IKell. 
Returning to the original form of matrix multiplica- 

tion (see Fig. 1 and equation (12)), however, we can 
see that  the segments on the line 1-1 and the segments 
on the line 2-2 are equally distributed in a statistical 
sense for all possible passes including many bridging 
segments. Therefore, roughly speaking, the abnormal 
increasing of matrix elements on one line (say 1-1) 
due to the imaginary part of B e might be cancelled 
by the abnormal attenuation of elements on the 
other line (say 2-2). This situation might explain 
disappearance of the Borrmann effects in highly dis- 
torted crystals, which is observed in dislocation images 
produced with X.rays (B0rrmaml et al., 1958) as 
well as electrons (Whelan et al., 1960) and in elasti- 
cally deformed crystals (for example, Hildebrandt, 
1959; Hunter, 1959; Ishii & Kohra, 1959) in X-ray 
c a s e s .  

4. Bending of Pendelldsung fringes 
(a) Electron micrographs 

PendellSsung fringes in electron micrographs are 
called extinction contours or equal-inclination fringes 
in parallel-sided crystals and called equal-thickness 
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fringes in wedge-shaped crystals.  Since both cases and 
more complicated cases can be t rea ted by s imilar  
principles,  we consider here ext inct ion contours as an 
example.  Par t icu lar  a t ten t ion  will  be drawn to 
contours which appear  almost  perpendicular ly  to a 
screw dislocation (Fig. 2(a)). 

/ -----> X 

2 (of 2 + B e) ½dz = const. (40) 
z 1 

In  our present problem we can write 

9 = 9o(X) + zJ 9(Y, z) .  (41) 

The te rm 9o(x) expresses la t t ice bending extended 
over the whole crystal  and  /19 expresses local dis- 
tort ions due to the dislocation. Obviously /19 tends  
to zero wi th  increasing [Yl. We take a contour l ine 
which satisfies the condit ion (40) for a par t icu lar  9o 
at  a large iY]. Near  the dislocation /I 9 takes an 
appreciable value, so tha t  the same value of 90 no 
longer satisfies the same condition. Thus we can 
expect a bending of the  contour. 

I t  follows immedia t e ly  from the condit ion (40) tha t  
if a pair  (90, Ag) satisfies the condition another  pair  
( - 9 0 , - / 1 9 )  satisfies the same condition. On the 
other hand  the elast ici ty  theory of dislocations tells 
us tha t  zJg(y , z )=  - £ 1 9 ( - y  , z) (Koehler, 1941). Also, 
in a simple case of homogeneous bending of the  
crystal ,  90(x) = - 90( - x) tak ing  the origin as 90(0) = 0. 
Thus we can expect t ha t  contours mus t  have a sym- 
me t ry  of inversion wi th  respect to the origin. Resul ts  
are qua l i ta t ive ly  in  accordance with experiments  
(Menter, 1960; K a m i y a  & Uyeda,  1961). 

,J j 

(a) 

Y 

T 

- - - ~ X  

(b) 

Fig. 2. Bending of extinction contours near a screw disloca- 
tion (x-axis). (a) Electron micrographs. (b) X-ray section 
topographs. 

Take x and  y in the direction of a dislocation line 
and ext inct ion contours respectively and the origin 
at  a point  on the central  line of the dislocation. 
Using the approximat ion  (31), contours are given by  
an interference condition through equations (28) and 
(29) 

(b) X-ray topographs 
In  this  section we are concerned with section pat- 

terns of X-ray  diffract ion topographs. As discussed 
in previous papers (Kato, 1961a, b), section pa t te rns  
are fu l ly  understood only in terms of a spherical 
wave theory. The theory is derived from a plane- 
wave theory  as described in the last  paragraph of 
§ 3(a) of par t  I (Kato, 1963). In  the present  

/~J[11~ of equat ion (I.47) should be given by  c a s e ,  ~K212 

equations (28) and  (29) of this  paper  and  N O  must  
be replaced by  Z~bn where ¢ n  is defined by  equa- 
t ion (6). Thus the wave fields at the exit  surface due 
to diffract ion waves are given by  

ffa=S+:expifStogo--Szz~9 dz] 

x D+ e x p i  (9e+B2)½dz 
z 1 

V I + D -  exp - i  (9~+B2)½dz d9o (42) 
z 1 

where to is the thickness of the crystal  and d is a 
constant,  proport ional  to the length  of a perpendicular  
from an observation point  to the direct ion of the 
incident  wave which satisfies the Bragg condition 
exactly.* /)+ and / )_  are ampl i tudes  which are 
constant  wi th  respeet to z under  the approximat ion  
of equat ion (31). 

* Exactly, (1 -- ~) is q/a in the notation used in the previous 
papers (Kato, 1961). 
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In order to calculate fa g, we use an approximation 
of stationary phase (for example, Jeffreys & Jeffreys, 
1946). Wave fields fg are proportional to the integrand 
itself of equation (42) in which 9o is replaced by 
9+ for D+-wave and 9-  for /)--wave respectively. 
Here 9+ and 9-  are 90-values at stationary points 
of the phase with respect to 9o, so that  they are 
given by 

( 1 -  @0=f(9+) (43) 
and 

(1-- (5)to = - f ( 9 - )  
where 

f z~v 
f(9o) = (90+Ag)/((90+Ag)e+B~}½dz. (44) 

z 1 

In general 9+ is not equal to - 9 -  so that  Pendel- 
15sung interference does not occur between conjugate 
waves as does in perfect crystals. This means that  
crystal waves do not propagate in a straight direction 
in a distorted crystal. 

Fringe contours are given by a condition for phase 
difference between/)+ and D -  wave, namely 

+ -  

L z i  . , 'z 1 

. ]z 1 

z 1 

This indicates that  bending of Pendell6sung fringes 
should be expected also in X-ray eases. 

The saddle points 9+ and 9"  of ./)+- and i)--waves 
for a reverse distortion - A  9 are given in a similar 
way 

( l - @ o = g ( G )  (46) 
and 

( 1 -  ~)t0= - g(9'-) 
where 

S z-'v g(9o) = (9o-~4 9)/{(~0- ~ 9F.+B~}½&. (47) 
z 1 

Fringe contours are also given by an equation similar 
to equation (45), in which the set of quantities 
(9+, q-, A~) are replaced by another set of 
(9+, 9-, -Ag) .  

Comparing equations (43) and (44) with (46) and 
(~7) we h~vo 

9 + = - 9 "  and ~ - = - ~ + .  (48) 

Thus we can see that  if a pair (~0+, 9-) satisfies the 
phase condition (45) for a distortion A ~, another pair 
(9+, ~0'_) satisfies the same condition for the reverse 
distortion - A 9- 

We consider again a simple case where a screw 
dislocation lies in a parallel-sided crystal perpen- 
dicularly to the net plane concerned. An observation 
point on the exit surface is specified by x and y 
coordinates as shown in Fig. 2(b). If no distortion is 

present, we have parallel fringes along y direction 
(Kato, 1961a, b). Since 6 is only a function of x on the 

t 
present choice of axes, 9_* and 9+ are functions of x 
directly and functions of y through a functional form 
of A 9. As described above, A 9(Y, z) = - A 9 ( -  Y, z). 
Therefore two sets (9+, 9-, A9) and (9+, 9'-, - A g )  
corresponding to the observation points (x, y) and 
( x , - y )  satisfy the same phase condition (45). In 
other words, fringe patterns around a dislocation 
must have mirror-symmetry with respect to the 
dislocation line (see Fig. 2(b)). Some observations by 
Lang are in accordance with this conclusion (Lang, 
1959). I t  is interesting to notice the contrast between 
electrons and X-rays. 

5. Applicabil i ty of the two-wave theory 
c o m b i n e d  wi th  the c o l u m n  a p p r o x i m a t i o n  

As described in § 2(b) two conditions are to be satisfied 
for applying the present theory to real crystals. 
We consider these conditions in a semi-quantitative 
way. Kere we consider only the critical conditions 
with respect to the variation of lattice in the plane 
including the incident wave and the diffracted wave, 
assuming perfectness in the direction perpendicular 
to this plane. So that  the problem is reduced to a 
two-dimensional one. The change of lattice along the 
direction perpendicular to the plane concerned can 
be treated in a similar way. 

Let us consider a crystal slice and limit the lateral 
size by a diaphragm* of width S on it. If a plane 
wave impinges the reflected wave has a line width ~2 
due to lattice distortions and also due to limiting 
the crystal size. Increasing the width S, Q may be 
approximated by 2z~(Ag/K), where Ag is the width 
of distribution of local p,-vector in a direction per- 
pendicular to the reflected beam within the column 
limited by the aperture S. Decreasing the width S, 
Ag may tend to zero. In this case, however, Q should 
be approximated by ~./S, in which A is the wave 
length, because diffraction due to the crystal size 
becomes predominant. Thus, we have an intrinsic line 
broadening ..Q,n, which may be estimated by an 
intersection of the above-mentioned two curves of 
f2 versus S. As the results the intrinsic variations 
in gl and g~ as well as in 9 are unavoidable in the 

1 column. The last is given by Aq~m=~.Q,n(~'~+~/'~)½, 
through equations (I-17) and (I.29). The critical con- 
clJtlon (a), therefore, may be given by 

~m .< B .  (49) 

Since an angular width A O of the Bragg reflection 
is given by 2 B / ( ~ +  ~2)½ equation (49) is also read as 

/ ~m < AO \~-~-~'2/ AO. (49') 

* The word 'slit' would be better than 'diaphragm'. ttow- 
ever, the latter is preferred here in order to accord with the 
usage in a previous paper (Kato, 1952). 
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As described in § 2(b), the direction of the column 
should be a direction of wave propagation in general 
cases. Using W for the angular width of wave propaga- 
tion corresponding to the angular width .(2 of the wave 
vector the sufficient condition for (b) is given by  

W (~2~)t~ < S~ (50) 

where t~ is an effective thickness of the region where 
the crystal is appreciably distorted. 

As a simple example we consider a lattice distortion 
due to an edge dislocation lying in the y-direction with 
the slip plane in the xy-plane. The net plane is assumed 
to be the yz-plane. Displacements (u, v, w) are given by 
Koehler (1941). A gradient (~u/~z) corresponds to 
the inclination of the net plane. The width, .(2, of 
this inclination over the crystal of width S in the 
vicinity of a point x = D  is approximately 

~2= S { e~u/ ~x~Z}x=.,z=o . 

The width ~m and Sm are given by this equation 
and 1"2 = ,~/S, so tha t  

n , n  = V (~T) /D  

S~ = ]/(2/T)D 

where T is (b/4~)(3--2~,)/(1--~,), b and v being the 
magnitude of Burger's vector and Poisson's ratio 
respectively. 

:Numerically, T is of the order of 10 -s cm. for usual 
substances. Inserting reasonable figures, ~t--5 × 10 -2 -~, 
A0,~ 10 -~' for electrons and ~t=l  _~, /10-~ 10 -~ for 
X-rays, the condition (49') gives 

D > 22 ~ (for electrons) 
D >  10 # (for X-rays) . (51) 

The second condition for the column approximation 
is through equation (50) tha t  

t~ < o~D2/ T (52) 

where a is a numerical factor corresponding to the 
ratio of ~2~ and W. This is larger than 10-~ for 
electrons whereas larger than  10 -a for X-rays (see 
equation (36) of Kato, 1961a). Since te__ D in disloca- 
tion cases, (52) is satisfied if 

D > 10 A (for electrons) 
D > 1 # (for X-rays).  

Thus in this example we can see that  the first condi- 
tion is more severe than the second. Following these 
arguments, it  is concluded tha t  the present theory 
is applicable to most practical cases of electrons. 
On the other hand, in X-ray cases, the theory is 
applicable only to a region more than 10# outside a 
dislocation core. 

In fact, in X-ray section topographs, central regions 
of 20# in diameter have entirely different characters 
compared with the outer region in which PendellSsung 
fringes appear as slightly bent. In the core region 
Pendell6sung fringes disappear. 

A P P E N D I X  

A. Matrix elements of I~ n) and 1(2.n+1) 
Inserting equation (20) into equation (18) we have 

H 0 ) -  H(°)~B212 R2~ P-(t)  dt 12 - -  11 ~ / P I !  
z 1 

H ( 1 )  _ H(0)/B2[ 2 ,2~ dt (A1) 21 - -  22 ~ / g l !  

where 

P ± =  (~v2+B 2) exp +2i (q)2+B2)½dz. 
Z=t Z I (n2) 

In a similar way we can easily obtain 

H~)=H(l°)(2B)2fr>sfQ-(r,s)  clrds 

H ( 2 2 2 ) : H ( ° ) ( 2 B ) 2 f r > s g Q + ( r ,  8 )drd8  ( A 3 )  

where 

i:( x exp + 2i cf 2 + B2)½dz. (A4) 

From Fig. 1, we can see tha t  the integrand of H~ ~) 
and H~ ~+1) can be expressed in terms of P±  and Q+. 
Thus we can write them down easily. From these 
I~ n) and 1 (.~n+l) defined by equations (24) and (25), At] , 
are given as follows: 

I(~2 n ) :  \ ~ /  ,~ ,~(Bi/9- ' l :n>' i>:-:>:l>'s:  l 1I Q+(r~,s~)dr, ds~ 
i=1 (A5) 

/ B .~ 2~ 

. , r n > S n > . . . > r l > s l > t  i~ l  

I(221 n+l) ---- i 

x f I YI Q+(ri, s~)P+(t)dr~dstdt 
r n > s n > . . . > r l > S l > t  i = 1  (A6) 

~¿(2n) and ~T  (.2.n+1) ]3. Convergency of--~ii ---~? 
First we consider [I~ ~)] = I/(2~)l. 

II~n)[ _< " "  / I  lQ±(r~, s~)ldr+ds~ 
rn > Sn i=1 

- , .  i :1 dz i (q~2+ 

- - ~-~] (-5~n)!(J~ ~ / ( ~ + B ~ )  (]31) ! 
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On the other  hand  

f f +~ d~ ~-~ dq~ / ( ~ + B ~ ) . d z  < ( m + l )  Be 
Zl d-Z--Z i /  ¢P' _ _oo(p2÷ 

= --~ ( m + l )  
B 

(B2) 

where m is the number  of maxima and minima of 
dq~/dz between zN and zl. Thus, i t  follows t ha t  

1 ( (m+ 1)½u} 2~ (83) Ix(i'i~)l-< (2-~T 
In  a similar way 

1 
[Iii~+~)[-< ( 2 n +  1)-------~. {(m+ 1)½~}2~+~" (B4) 

~T  (~'*) and ZI!~ ~+1) converge Therefore we can see ---i/ 
absolutely.  
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Electron  Dif fract ion Study  on T h i n  F i l m s  of P o l y m e r s  of p - H a l o g e n o - s t y r e n e  

BY KINYA Y~ATADA* 
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Thin films of polymers of p-Cl-, p-Br- and p-I-styrene obtained by radical polymerization were 
studied by electron diffraction. Ten to thirteen halos were obtained by using a sector-camera. 
Intensity curves for some assumed models were calculated and were compared with the observed 
ones. In the cases of the Br- and I-derivatives the complex atomic scattering factors were used for 
the calculation. The radial distribution method was applied to the Cl-derivative. 

The following results are common to all three kinds of halogen derivatives. A linear molecule is 
built up of styrene residues connected in a 'head to tail' arrangement, and their benzene rings are 
located alternately on each side of the plane of the zig-zag paraffin chain. Neighboring molecules are 
closely packed in a 'face to face' configuration in a plane perpendicular to the chain. These regular- 
ities in the structure are maintained only among the nearest neighbor residues. 

1. I n t r o d u c t i o n  

Several electron diffraction studies of amorphous th in  
films have been reported. Since more halos can be 

* Present address: Faculty of Science, Osaka City Univer- 
sity, Sugimotocho, Sumiyoshi-ku. Osaka, Japan. 

obta ined by  electron diffract ion t h a n  by X-ray  dif- 
fraction,  the  former method is be t te r  suited to a 
s t ructure  analysis of the shorter  in tera tomic  distances. 
There have been few studies, however, in which this  
usefulness of electron diffract ion has been exploited. 
In  the present s tudy,  this mer i t  of electron diffract ion 


