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Dynamical Diffraction Theory of Waves in Distorted Crystals.
I1I. Perturbation Theory

By N. KaTto

H. H. Wills Physics Laboratory, University of Bristol, England and
Department of Applied Physics, Nagoya University, Nagoya, Japan

(Recetved 10 August 1961 and in revised form 7 March 1962)

As a special application of the ‘lamellar-crystal theory’ described in Part I, a two-wave theory is
developed for distorted crystals in which the individual lamellae are perfect in lateral directions.
A perturbation approach is used in practical applications so that slightly distorted crystals are
mainly concerned. An apparent departure from Friedel's law on (&, k, 1)- and (&, %, I)-reflections
in X-ray topographs (Lang, private communication) is interpreted as an effect of a slight lattice-
bending in the presence of the Borrmann absorption. The distortion of Pendellssung fringes due
to a lattice bending in electron cases as well as in X-ray cases is also explained. The applicability of
the present two-wave theory to crystals having an arbitrary distortion is discussed together with
the justification for the column approximation (Hirsch et al., 1960).

1. Introduction

Most of diffraction theories applied to distorted
crystals are formulated on the base of the wave-
kinematical approximation since they are mainly
concerned with highly distorted regions in small
crystallites (Warren & Averbach, 1950; Wilson, 1952).
Recent direct observations of lattice defects in a single
crystal by means of electrons (Hirsch et al., 1956)
as well as by X-rays (Lang, 1958; Borrmann et al.,
1958; Newkirk, 1958) have stimulated the develop-
ment of the wave-dynamical theory applicable to
distorted crystals.

So far a few attempts along this line have been
reported in electron problems.* Heidenreich (1949)
has dealt with a homogeneously bending crystal and
Hashimoto et al. (1960) have been concerned with
an edge dislocation lying in a crystal parallel to the
incident wave. The principal idea used by them is to
divide a distorted crystal into many parts or columnst
along the direction of the incident wave and to apply
a perfect-crystal theory to an individual column.
The essential assumption is that the lattice is
perfect within these columns in any sense. Thus their
theories may be called ‘perfect-crystal column theo-
ries’.

In the present paper, it will be shown that the
two-wave theory of Part I (Kato, 1963) can be developed
for the case of distorted crystals in which distortion
occurs along a direction of wave propagation. Fun-

* The author was informed during the preparation of this
work that Howie & Whelan were developing independently
a theory which was equivalent to the present theory in fun-
damental points. Their paper has been published already
(1961). (Note added in the revision.)

1 The word ‘columns’ was used first by Hirsch et al. (1960)
in their kinematical theory on dislocation images in electron-
micrographs.

damental aspects of the theory will be described in § 2.
In order to obtain practical results we usc a pertur-
bation approximation. In §3 and §4 the following
two experiments are explained respectively in terms
of the present theory; (a) an apparent departure from
the Friedel law on (h, k, 1) and (%, k, i) reflections in
X-ray topographs (Lang, private communication) and
(b) the bending of Pendellésung fringes due to lattice
distortion in electron cases as well as in X-ray cases.

Since the present theory is a ‘two-wave theory’,
we must necessarily assume that the crystal slices
are perfect in lateral directions but displaced relative
to one another If, however, we combine the present
theory with the column approximation we may
apply the theory to more general cases of lattice
distortions. So far the column approximation is not
used with any sufficient justification particularly in
a wave-dynamical sense, although the approximation
itself is very fundamental for the theory of Heiden-
reich and Hashimoto et al., as well as for the present
one. In § 5, using the diaphragm consideration (Kato,
1952), two semi-quantitative criterions are given for
justifying the column approximation.

2. Two-wave theory for distorted crystals

Any deformation of lattice can be described in terms
of the displacement of lattice points as a function of
positions in the undeformed state. If the local varia-
tion of the displacement is small enough, lattice
conception is retained. Then we can define also
reciprocal lattice vectors as a function of positions
in real space. In this paper we are concerned with
only such small distortions.

(a) Two-wave theory
In this section we consider cases in which the
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lattice is perfect and homogeneous in lateral direciions.
Here lateral implies parallel to the incident surface
of the crystal. Thus any dilatation, tilting or rotation
is not allowed for the upper part of the crystal with
respect to the lower part. Otherwise some misfits
between upper and lower parts of the crystal may
occur and violate the homogeneity of the lattice in
lateral directions. Under this limitation the whole
crystal can be divided into crystal slices by perfect
lattice planes which are equivalent and parallel to
the incident surface. Thus the diffraction phenomena
in an individual crystal slice can be treated in the
same way as shown in Part I for perfect crystals.
Next we consider a net plane which is inclined with
respect to the incident surface. In perfect crystals the
net plane should be perfectly plane. Now this restric-
tive condition is taken off. In the distorted crystals
with which we are concerned here the inclined lattice
planes are allowed to be bent with going into the
crystal. The lattice distortion of this type is specified
only by giving the displacements of the crystal slices
(or of equivalent axes).

We take z,- and yr-axes and their corresponding
reciprocal axes on the top surface of each slice with
the origins placed at the equivalent lattice points.
With respect to these coordinate axes we can define
the following notations as in Part I.

{Pn, g»}: The relative displacements of nth crystal-
slice with respect to (n— 1)th slice in lateral direc-
tions.

Azn: The thickness of the crystal slice.

(&, 1, £): The components of the wave vector of the
incident wave in the reciprocal space.

(&', 1", £'): The components of the wave vector of the
diffracted wave in the reciprocal space.

(91, g2, 95): The components of the reciprocal lattice
vector gn of the net plane* with which we are
concerned.

Since the lattice is assumed as perfect in lateral
directions g1 and g2 are constant throughout the crystal
whereas g7 may not be so. Among these quantities
the relation

G190+ 92@n~+ g5 A2, =0 (1)

should be held, since the vector g» is perpendicular
to the net plane concerned.

The components (&, %) and (&', %’) are connected
with each other by

(&, n)=(&§ n)+2n(q, g2) - (2)

In addition £ and (' are directly given by (&, 5) and
(&', n’) respectively because the magnitude of the
wave vectors is always K. Consequently the com-
ponents (&, , {) and (&', %', {’) are constant through-

* Strictly speaking, this should be called ‘net surface’
since it can be defined as a plane only in a localized region.
Since no ambiguity is expected ‘net plane’ will be used here-
after.
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out the crystal. Thus only two waves are sufficient to
account for the crystal waves.
Finally a parameter is defined by

Pn=%({—C'—2ng3) @)

for each slice. This indicates the departure of the
incident wave from the exact Bragg condition.
Using these relations we can obtain the relation
between the Fourier transforms of the wave function,
F, and Fn+1 for the nth and (n+ 1)th slices (¢f. equa-
tion (I-33)),
Fn+1= (dncnon)Fn . (4)

Here {;, Q. and d, are given by equations (I-30),
(I-31) and (I-32) respectively. Like the cases of
perfect crystals we can make the matrix product
symmetrical as

d20nQn=exp i®P,.Rn (5)

where @, and R, are given by

D= (Epn+ NGn+ (A22) + 4P+ DPr) Azn— pulzn  (6)

R. — (6XP i1@adzs 0 a bi2dzn (1)
" 0  exp —i@ndzy) \ibudz, a* |°

They are the generalized equations of equations
(I-38) and (I-39) respectively. Notations ¢, ¢r, a, b1z
and bz have the same meanings as those in Part I.
Thus the problem is reduced to calculation of the
matrix product

Ky=RyRy_:...R; . (8)

Similarly to equation (I-41) we diagonalize a matrix

_ exp A7 0 —1
R.=X, ( 0 exp /1;2) X; (9)
= Xn]\nle (91)

where X, and X;! are the right and the left eigen-
matrix of Ry, respectively, and exp A% are the eigen-
values. The latter are given by equation (I-42) for
each slice.

Thus b= g+ Bz

% =—1i(@i+ B2 Az, (10)

where @, stands for the parameter o of the nth slice.
With this notation

Ky=XyHyX3 (11)
where
Hy=AyEn-iAnv-1...Ei\ (12)
and
En=X77-il—1Xn . (13)

In the present problem difficulties arise in that E,
is no longer a unit matrix. It may be expected, however,
that E, is close to a unit matrix if distortions are
sufficiently small. In fact, writing
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En _ (l + 8‘;‘1 8?2

n n
~ exXp éen &
en  l+ed,

n n 14
€21 exp 822) ( )

we have, for example,

el ={[pn+ (p2+B2)})/(g2 + B2)}} Aza(A pn/2)i
+{{@n— (@3+ B2/ (g2 + B2)} (A ga/2)
where

A(Pn=(Pn+1—(Pn .

In the expression for &}y the imaginary part decreases
with decreasing thickness Az, and the factor
Agn is of an order of magnitude Az,~10-8 cm.
On the other hand the real part is independent of
Az, and the factor Adg@, is of an order B-1,
namely larger than 10-% cm. in X-ray cases and 10-6
cm. in electron cases. So we can safely neglect the
imaginary part. Thus we have finally

&t _((pn+B2)é A‘;’”)
1= f,‘0,.+32
&~ ‘P"+(¢’n+B2)é (A?)n
20 = (Pn+B2 9
&~ — @t (it B2} (Awn
12 = <}’7n+B2 2
& o~ (pn+B2 (A(p"
B = (pn+B2 2 ) (15)
S; ri 54 ot
O—=< <O
1 1 1
[}
[}
t
Y !
N N [}
]
1
1
2 i 2
O Si ri Sy nt ©

Fig. 1. Schematic diagram of matrix calculation. Bridging ¢—¢
should be inserted for calculating odd-order matrix H;;(2n+1),

The magnitude of these quantities is of an order
(A@a/B) at most. The quantity 4. is the change of
@n due to the bending of the net plane concerned
between the neighbouring slices. In perfect crystals
the Bragg condition is satisfied at @p=0 and by
increasing @p by the amount of B the diffracted
intensity decreases to the half of the maximum value
at the Bragg condition. Thus, neglecting a numerical
factor, Apn/B is a ratio of a bending angle of the
net plane per one slice and the angular width of the
Bragg reflection.

If {e;}’s are small enough compared with 1, we
can expand the matrix Hy in the power series:

HY 0 0 HY\, (H® 0
= (5! H%%>)+<H%? o)+ (% )t (19)
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The matrix elements in this expression are cal-
culated in terms of {A%} and {¢}} considering a topolog-
ical diagram shown in Fig. 1. Segments on the line
1-1 and 2-2 correspond to a multiplication through
diagonal elements of E, in equation (12). Bridging
elements such as s—s; and r;—; correspond to mul-
tiplication through skew elements of E, by which
a switching is operated from multiplication of
exp {e};A%1} to multiplication of exp {e§,A%} or wice
versa. The suffixes s; and 7; specify the switching
matrices. Matrix elements of Hxy are the sum of
products corresponding to all possible routes from the
right j-terminal to the left ¢-terminal. The expansion
of equation (16) implies a classification of these
routes in terms of the number of bridgings. Following
this consideration we have

I
HY = exp X (el + 1)
i=1

; a7
H = exp X (¢t T)

HR=HY 5‘ &y exp 2 (gl + Ahp— &hy — 2%))
=t (18)

ngll) = S_r 2 €31 6Xp _2'; (81.1 + li'l — €2 — Agz) .
i=

Changing the summation to an integral it follows
from equation (10) that

2 A’l—iS (92 + Bz
(19)
3 A= —zS (g2+ Bz ,
i=1 0
where ¢ is used in the place of @, and assumed as
a continuous function of z.
Moreover from equation (15)

S el —log (%) —log (£
1:5,]‘. sll_log ([XI> log (ﬂl)
S el —loo (27 _ Y
& cemton (32)-1os (2]
Zn,' g, =log (ﬁ) +log (&)
i=1 Kn /31
S i %1 Yn
Zeumog(Z)log(), 0
where
&n = (?ﬁrl‘Bz)i
Bn = {pn+(gh+ B2t} (21)
yn = {pn— (g + B} (22)
Here we can see
Buyan = iB. (23)

By inserting these into equations (17) and (18),
the matrix elements of H, are given as follows:
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HEY = ( > (,31 ) I& exp zS (¢*+ B2)idz
Bn
HE — (_N> >1<2ﬂ> exp —zS (2+ B2z (24)
&1 ) \y~
A = (2) () 1157+ exp i (924 Bz

15 = (2 (uya) s 2 exp =i | (g4 B,

(25)
where
IO =IV=1 (26)
and
BeroNy g
a _ P° ¥ _
Iy =~ S P 24 (¢*+B2)4dz
B2 <P1v d(P
IH = = & (p2+BZ exp 2LS (@2+B2idz.  (27)

General terms I&™ and I$"+Y are given in the Ap-
pendix.

Once we have the matrix elements of Hy, we can
write down Ky-matrix from equation (11) as follows:

l z
Ky =57— [A+ exp zg (¢2+ B¥}dz
200008 Jo

—A4-.exp —iS (¢2+B2)%dz]
0

K= g {—B+ eXpiS (g2 +B2)dz
Q1w .
z
+ B-.exp —i( (<P2+Bz)5dz] (28)
o
K b1 C z o B
12=2(x +eXp1, o(p_*_ ) 2
z
~0-exp —i{ e+ Byt
0
ba1 z ,
Ko = 5 {D+ expzS (@2 +B2)tdz
K 0
z
—D_.exp —iS ((;02+B2)i’dz] (29)
0
where
A+=p4D =B pn2IE + <%1!> gD
A-=y5D-=pynZIG+ <%_> I+
B+—yAC+—y1yN2](2n)+ ( >ZI(122n+1)
B-=f3C-=ppnZIE + (?) ZIgh . (30)
1

It can be shown that infinite series ZI$™ and ZIZ™D
converge absolutely (see Appendix). In some partic-
ular cases (§3 and §4), the first term is sufficient
for the crystal waves to be accounted for. In this case

AC16—19
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Ay = B- = pfiy, A-=Bi= yiyn
C- = Di = (f1/Bn), C+ = D= (y1/y~n). (31)

These are constant with respect to position z. Then
we can retain the conception of the dispersion surface.
Crystal waves can be described by an interference
between two waves which belong to two branches of
the dispersion surface, although the wave length
changes according to crystal distortions.

In the second approximation, the skew components
Iﬁ}) appear in 4, B, C, and D. This does mean that
scattering waves are created due to crystal distortions.
If we change the variable z to A through

(¢*+ B2 dz=Bdh

we can see I}’ are proportional to a Fourier coefficient
of lattice distortion de/dh modified by a factor
(¢%+ B2)~! which suppresses the effect of regions
where the Bragg condition is not satisfied.

(b) Combination of the two-wave theory with the column
approximation

The lattice distortion to which the present theory
is applicable in a strict sense seems to be very re-
strictive at a first sight. If, however, we combine
the present theory with the following column approx-
imation we may deal with fairly general cases of
lattice distortions. The column approximation in the
present theory implies the following processes of
calculating wave functions. We take a column of
suitable size and shape around the point at which
we need to know the wave function. We apply the
two-wave theory to a hypothetical crystal which is
perfect in lateral directions, being almost the same
as the real crystal within the column. Finally, the
wave function due to the real crystal is approximated
by the wave function due to this hypothetical one
at the point concerned. These processes may be
justified if it is possible to find a suitable column
which satisfies the following conditions: (a) within
the column an incident wave and the corresponding
diffracted wave can be specified by a set of discrete
values of (&, n) and (&', n’) respectively and (b) the
surrounding regions outside the column have no effect
on the wave function at the central region of the
column. Critical conditions for these will be discussed
in §5.

In the cases of electron problems (Heidenreich, 1949;
Hashimoto, 1960; Hirsch et al., 1960) the direction
of columns has been taken either along the direction
of the incident wave or along the diffracted wave.
Actually, however, the crystal wave propagates in a
direction lying between these directions (Laue, 1952,
1953; Ewald, 1958; Kato, 1952, 1958). Therefore it
is more reasonable to take the direction of the column
along the direction of wave propagation. In electron
cases, nevertheless, it is almost unnecessary to em-
phasize this alteration since the Bragg angle is small
enough. In X-ray cases, on the other hand, the dif-
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ference between the direction of wave propagation
and the directions of the incident and diffracted
wave is recognizable in ordinary experimental con-
ditions for large single crystals. Moreover, as will be
seen in §4(b), the direction of the wave propagation
is bent due to lattice distortions. In this case it is
more adequate to take a bent column in which the
crystal wave propagates along the adopted column
in a self-consistent manner. If lattice distortions are
too large, of course, we cannot define such a column
which satisfies this self-consistency and the conditions
(@) and (b) altogether.

3. Intensity gnc_)maly of (h, k, 1) and
(h, k, 1) reflections

In X.ray traverse topographs for Si single crystals,
Lang (1958) observed first that the topograph image
of distorted regions due to (b, &, I) and (A, &, ) reflec-
tions are different in integrated intensity.* The
distortion with which we are concerned here is,
for example, the one which is extended over a fairly
wide area due to an array of the same-signed disloca-
tions.

We start our discussion with a non-absorbing case.
The R-matrix can be transposed to an R’-matrix by
a diagonal matrix T as

R=TR'T-! (32)
where
_ (0 0 )
= (5 o 33
, _ (expipdz 0 a BAz
R = ( 0 exp —i(pAz) (iBAz a* (34)
Thus we have
K=TK'T-! (35)
and
K'=R,R}_,...R,. (36)

In non-absorbing cases the matrices {R;} are unitary
matrices, so that K’ is also unitary. Thus, generally,

|K1'2|=|K2’1[ . (37)
From equation (1:47),
— CI 2 — T2
Inki =+ |Ka1|2=|Ky|
¢
e ¢ 2—|K! |2
L —?|K121 =|Kps?.
Therefore
D=1z - (38)

This statement holds independently of a parameter ¢;
consequently, the incident angle and a type of crystal

* Traverse patterns are produced by an integrated intensity
diffracted from individual points at the exit surface (see
Kato, 1961).
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distortions. We cannot expect any anomaly men-
tioned above.

Next we consider absorbing crystals. If the erystal
distortion is small, neglecting higher terms of the
series, C and D are given by equation (31). From
this it follows that

C+=.D_>C—=D+

if pn> @1 or vice versa. Moreover, if B2 is a complex
quantity due to periodic distribution of absorbing
centers we have

lexp ¢ S (24 B2)¥dz| > | exp—iS (p2+ B2)idz|

assuming the imaginary part of B2 is negative. There-
fore, neglecting the oscillation term, i.e. the cross
term of C, and D, we have

|K1o| > | K| (39)

or vice versa depending upon the relative magnitude
of g1 and @~ and the sign of the imaginary part of B2.
This is true for all g1, namely for the whole incident
angle. Thus we can expect an anomaly due to slight
distortions under the presence of the Borrmann
absorption.

In highly distorted ecrystals, we cannot neglect
higher terms in ¢, and D_, which include factors
such as

exp iZiS (p2+ B2)dz .

In this case C- and D- may be larger than C; and D.
respectively under the condition that the imaginary
part of B2 is negative. Therefore it is rather difficult
to get a general conclusion on the magnitude of
|K1p| and |Ky|.

Returning to the original form of matrix multiplica-
tion (see Fig.1 and equation (12)), however, we can
see that the segments on the line 1-1 and the segments
on the line 2-2 are equally distributed in a statistical
sense for all possible passes including many bridging
segments. Therefore, roughly speaking, the abnormal
increasing of matrix elements on one line (say 1-1)
due to the imaginary part of B2 might be cancelled
by the abnormal attenuation of elements on the
other line (say 2-2). This situation might explain
disappearance of the Borrmann effects in highly dis-
torted crystals, which is observed in dislocation images
produced with X-rays (Borrmann et al., 1958) as
well as electrons (Whelan et al., 1960) and in elasti-
cally deformed crystals (for example, Hildebrandt,
1959; Hunter, 1959; Ishii & Kohra, 1959) in X-ray
cases.

4. Bending of Pendelldsung fringes

(@) Electron micrographs

Pendellosung fringes in electron micrographs are
called extinction contours or equal-inclination fringes
in parallel-sided crystals and called equal-thickness
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fringes in wedge-shaped crystals. Since both cases and
more complicated cases can be treated by similar
principles, we consider here extinction contours as an
example. Particular attention will be drawn to
contours which appear almost perpendicularly to a
screw dislocation (Fig. 2(a)).

(@)

—_— X

(b)
Fig. 2. Bending of extinction contours near a screw disloca-
tion (z-axis). (@) Electron micrographs. (b) X-ray section
topographs.

Take z and y in the direction of a dislocation line
and extinction contours respectively and the origin
at a point on the central line of the dislocation.
Using the approximation (31), contours are given by
an interference condition through equations (28) and
(29)

Zy
2 5 (¢ + B2)}dz=const. (40)
Z1
In our present problem we can write
= po(@)+ Ap(y, 2) . (41)

The term go(z) expresses lattice bending extended
over the whole crystal and A¢@ expresses local dis-
tortions due to the dislocation. Obviously A¢ tends
to zero with increasing |y|. We take a contour line
which satisfies the condition (40) for a particular g
at a large |y|. Near the dislocation A takes an
appreciable value, so that the same value of o no
longer satisfies the same condition. Thus we can
expect a bending of the contour.

It follows immediately from the condition (40) that
if a pair (@o, Ag) satisfies the condition another pair
(—@o, —Ag) satisfies the same condition. On the
other hand the elasticity theory of dislocations tells
us that Ae(y, 2)=— Ap(—y, z) (Koehler, 1941). Also,
in a simple case of homogeneous bending of the
crystal, go(x) = — @o( — ) taking the origin as go(0)=0.
Thus we can expect that contours must have a sym-
metry of inversion with respect to the origin. Results
are qualitatively in accordance with experiments
{Menter, 1960; Kamiya & Uyeda, 1961).

(b) X-ray topographs

In this section we are concerned with section pat-
terns of X-ray diffraction topographs. As discussed
in previous papers (Kato, 196le, b), section patterns
are fully understood only in terms of a spherical
wave theory. The theory is derived from a plane-
wave theory as described in the last paragraph of
§ 3(a) of part I (Kato, 1963). In the present
case, (1) of equation (I-47) should be given by
equations (28) and (29) of this paper and N@ must
be replaced by 2@, where @, is defined by equa-
tion (6). Thus the wave fields at the exit surface due
to diffraction waves are given by

+o0 . 2y
f5= S expt [6to(po - S (pdz]
—00 21
~ 2y
X {D+ expt S

4

(p?+B2)tdz

N

+D_exp —i S ((;02+B2)*d2} dpo  (42)

%1
where fo is the thickness of the crystal and ¢ is a
constant, proportional to the length of a perpendicular
from an observation point to the direction of the
incident wave which_satisfies the Bragg condition
exactly.* D, and D- are amplitudes which are
constant with respect to z under the approximation
of equation (31).

* Exactly, (1—d) is g/o in the notation used in the previous
papers (Kato, 1961).
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In order to calculate fJ, we use an approximation
of stationary phase (for example, Jefireys & Jeffreys,
1946). Wave fields f7 are proportional to the integrand
itself of equation (42) in which g¢o is replaced by
@+ for Di-wave and ¢@- for D_-wave respectively.
Here @+ and @- are @o-values at stationary points
of the phase with respect to o, so that they are

given by
(1-0)to=f(¢+) (43)
and
(1= 0)to=—f(p-)
where

N
$go) =" (go+ A9 {(go+ App+ Bz (84
ht!

In general @ is not equal to — ¢- so that Pendel-
16sung interference does not occur between conjugate
waves as does in perfect crystals. This means that
crystal waves do not propagate in a straight direction
in a distorted crystal.

Fringe contours are given by a condition for phase
difference between D. and D_ wave, namely

[ZN N
LS (@t Agp+ Bz + Stogp. — | (<p++A(p)dz]
zl lzl
N
——[—S {(g-+ A9)2+ B2} dz + Stogp-
%

-+ A)dz] = const. (45)

021
This indicates that bending of Pendellosung fringes
should be expected also in X-ray cases. _
The saddle points ¢} and @’ of D+- and D_-waves
for a reverse distortion — g are given in a similar

way
(1—0)to=g(%) (46)
and
(1—0)to=—g(el)
where
og0) =\ (go—Ap){lgo— AP+ BYidz . (41)

Fringe contours are also given by an equation similar
to equation (45), in which the set of quantities
(p+ @, Ap) are replaced by another set of
(9 9 —Ao). .

Comparing equations (43) and (44) with (46) and
(47) we have

pi=—g¢_ and @-=—g@,. (48)

Thus we can see that if a pair (@+, p-) satisfies the
phase condition (45) for a distortion A¢, another pair
(@, @_) satisfies the same condition for the reverse
distortion — A¢.

We consider again a simple case where a screw
dislocation lies in a parallel-sided crystal perpen-
dicularly to the net plane concerned. An observation
point on the exit surface is specified by z and y
coordinates as shown in Fig. 2(b). If no distortion is
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present, we have parallel fringes along y direction
(Kato, 1961a, b). Since ¢ is only a function of x on the
present choice of axes, ¢, and @) are functions of x
directly and functions of y through a functional form
of Ag. As described above, Ay, 2)=—Ap(—1y, z).
Therefore two sets (¢4, ¢, 4¢) and (¢, ., —Ap)
corresponding to the observation points (z,y) and
(x, —y) satisfy the same phase condition (45). In
other words, fringe patterns around a dislocation
must have mirror-symmetry with respect to the
dislocation line (see Fig. 2(b)). Some observations by
Lang are in accordance with this conclusion (Lang,
1959). It is interesting to notice the contrast between
electrons and X-rays.

5. Applicability of the two-wave theory
combined with the column approximation

As described in § 2(b) two conditions are to be satisfied
for applying the present theory to real crystals.
We consider these conditions in a semi-quantitative
way. Here we consider only the critical conditions
with respect to the variation of lattice in the plane
including the incident wave and the diffracted wave,
assuming perfectness in the direction perpendicular
to this plane. So that the problem is reduced to a
two-dimensional one. The change of lattice along the
direction perpendicular to the plane concerned can
be treated in a similar way.

Let us consider a crystal slice and limit the lateral
size by a diaphragm* of width S on it. If a plane
wave impinges the reflected wave has a line width Q
due to lattice distortions and also due to limiting
the crystal size. Increasing the width S, 2 may be
approximated by 2x(A4g/K), where Ag is the width
of distribution of local g-vector in a direction per-
pendicular to the reflected beam within the column
limited by the aperture S. Decreasing the width S,
Ag may tend to zero. In this case, however, 2 should
be approximated by A/S, in which 1 is the wave
length, because diffraction due to the ecrystal size
becomes predominant. Thus, we have an intrinsic line
broadening £2,, which may be estimated by an
intersection of the above-mentioned two curves of
£ versus §. As the results the intrinsic variations
in g1 and g2 as well as in ¢ are unavoidable in the
column. The last is given by Agm=3Q2n(£2+ 1523,
through equations (I-17) and (1-29). The critical con-

dition (a), therefore, may be given by
gm < B. (49)

Since an angular width A8 of the Bragg reflection
is given by 2B/(£2+4 72)? equation (49) is also read as
&+n?
§'2+ nlz

}
Qu < Ae( ) ~A0. (49)

* The word ‘slit” would be better than ‘diaphragm’. How-
ever, the latter is preferred here in order to accord with the
usage in a previous paper (Kato, 1952).
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As described in § 2(b), the direction of the column
should be a direction of wave propagation in general
cases. Using W for the angular width of wave propaga-
tion corresponding to the angular width (2 of the wave
vector the sufficient condition for (b) is given by

W(Qn)te < Sm (50)

where f. is an effective thickness of the region where
the crystal is appreciably distorted.

As a simple example we consider a lattice distortion
due to an edge dislocation lying in the y-direction with
the slip plane in the xy-plane. The net plane is assumed
to be the yz-plane. Displacements (u, v, w) are given by
Koehler (1941). A gradient (0u/0z) corresponds to
the inclination of the net plane. The width, 2, of
this inclination over the crystal of width S in the
vicinity of a point =D is approximately

Q=8{0u/0x0z},_p, .0 -

The width 2., and S, are given by this equation
and Q= 1/8, so that
Qm = yY(A7)/D
= V(4D
where 7 is (b/4m)(3—2v)/(1—»), b and » being the
magnitude of Burger’s vector and Poisson’s ratio
respectively.

Numerically, 7 is of the order of 10-8 cm. for usual
substances. Inserting reasonable figures, 1=>5x 10-2 A,
A6 ~ 10-2 for electrons and A=1 A, 46 ~10-5 for
X-rays, the condition (49') gives

D>22 A
D>10pu

(for electrons)

(for X-rays) . (51)

The second condition for the column approximation
is through equation (50) that

te< “.DZ/T (52)

where « is a numerical factor corresponding to the
ratio of 2, and W. This is larger than 101 for
electrons whereas larger than 104 for X-rays (see
equation (36) of Kato, 1961a). Since ¢, ~.D in disloca-
tion cases, (52) is satisfied if

D>10 A
D>1u

(for electrons)
(for X-rays).

Thus in this example we can see that the first condi-
tion is more severe than the second. Following these
arguments, it is concluded that the present theory
is applicable to most practical cases of electrons.
On the other hand, in X-ray cases, the theory is
applicable only to a region more than 10u outside a
dislocation core.

In fact, in X-ray section topographs, central regions
of 204 in diameter have entirely different characters
compared with the outer region in which Pendellosung
fringes appear as slightly bent. In the core region
Pendellosung fringes disappear.
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APPENDIX
A. Matriz elements of IG™ and IGHV,
Inserting equation (20) into equation (18) we have

. N
H&?=H§‘P<BZ/2ﬂ%)S P_(t)dt

%

HD = HO) BZ/le)S P.(t)dt (A1)
where K
de .
P, = {(d—)/((p2+B2)} exp inS (g2 + B2)tdz.
4 z=¢ 2y (A2)
In a similar way we can easily obtain
3 20
H®=HY <§B> S SQ_(r, s)drds
r>s
N 2
HY = HY (% B) S SQ+(7‘, s)drds  (A3)
where ~
_l(® 21 B2 dg 24 B2 }
o) e ), () e
X exp J_rQiS (24 B2)idz . (A4)

From Fig. 1, we can see that the integrand of HE™
and HE"+D can be expressed in terms of P, and @.
Thus we can write them down easily. From these
IE™ and IG™*Y, defined by equations (24) and (25),
are given as follows:

B 2n * n
I(l‘zln)= (,2_ z) g ............ 5 H Q- (s, si)dridsi
Wrp>sp>e >rp> 8¢ i=1
B 2n n
Ig = <§ @> S ............ S H Q4+ (ri, 8:)drids;
™m>Sp > >rp> 51 ¥ t=1 (A5)

-

x \. .............. \ﬁ Q- (i, 8:)P—(t)drids:dt

> >t i=1
B2\ (B \**
1321”1): (3) (E- Z)

XS
TR>Sp > >T1> 51>

S II Q. (74, 8:) P+ (t)dredsidt
(A6)

B. Conwergency of ZIG™ and ZIE"D
First we consider |I$¥] = [I&M).

B 2n n
|I§21n)l S (?) an> Sn o Szl]l lQi(ri’ Si)ldrid(gi

-, Sl e,

{ e ¢2+B2)} drds,

- (3l e

‘ln




290

On the other hand

N\dg . §+°° do
s B2).dz < 1 —
- %(m—i—l) (B2)

where m is the number of maxima and minima of
dp/dz between zy and z1. Thus, it follows that

. 1
In a similar way
I < = {m e Dt (B4

Cnt1)!

Therefore we can see XI{™ and XIE™ converge
absolutely.
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Electron Diffraction Study on Thin Films of Polymers of p-Halogeno-styrene

By Kinva KaTaDA*

Faculty of Science, Osaka City University, 12 Minami-ogimachi, Kita-ku, Osaka, Japan

(Received 23 October 1961 and in revised form 7 March 1962)

Thin films of polymers of p-Cl-, p-Br- and p-I-styrene obtained by radical polymerization were
studied by electron diffraction. Ten to thirteen halos were obtained by using a sector-camera.
Intensity curves for some assumed models were calculated and were compared with the observed
ones. In the cases of the Br- and I-derivatives the complex atomic scattering factors were used for
the calculation. The radial distribution method was applied to the Cl-derivative.

The following results are common to all three kinds of halogen derivatives. A linear molecule 1s
built up of styrene residues connected in a ‘head to tail’ arrangement, and their benzene rings are
located alternately on each side of the plane of the zig-zag paraffin chain. Neighboring molecules are
closely packed in a ‘face to face’ configuration in a plane perpendicular to the chain. These regular-
ities in the structure are maintained only among the nearest neighbor residues.

1. Introduction
Several electron diffraction studies of amorphous thin
films have been reported. Since more halos can be

* Present address: Faculty of Science, Osaka City Univer-
sity, Sugimotocho, Sumiyoshi-ku. Osaka, Japan.

obtained by electron diffraction than by X-.ray dif-
fraction, the former method is better suited to a
structure analysis of the shorter interatomic distances.
There have been few studies, however, in which this
usefulness of electron diffraction has been exploited.
In the present study, this merit of electron diffraction



